The submodule structure of Weyl modules for SL3

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On special submodule of modules

‎Let $R$ be a domain with quotiont field $K$‎, ‎and‎ ‎let $N$ be a submodule of an $R$-module $M$‎. ‎We say that $N$ is‎ ‎powerful (strongly primary) if $x,yin K$ and‎ ‎$xyMsubseteq N$‎, ‎then $xin R$ or $yin R$ ($xMsubseteq N$‎ ‎or $y^nMsubseteq N$ for some $ngeq1$)‎. ‎We show that a submodule‎ ‎with either of these properties is comparable to every prime‎ ‎submodule of $M$‎, ‎also we show tha...

متن کامل

The second cohomology of simple SL3-modules

Let G be the simple, simply connected algebraic group SL3 defined over an algebraically closed field K of characteristic p > 0. In this paper, we find H(G, V ) for any irreducible G-module V .

متن کامل

Modules for which every non-cosingular submodule is a summand

‎A module $M$ is lifting if and only if $M$ is amply supplemented and‎ ‎every coclosed submodule of $M$ is a direct summand‎. ‎In this paper‎, ‎we are‎ ‎interested in a generalization of lifting modules by removing the condition‎"‎amply supplemented‎" ‎and just focus on modules such that every non-cosingular‎ ‎submodule of them is a summand‎. ‎We call these modules NS‎. ‎We investigate some gen...

متن کامل

A Submodule-Based Zero Divisors Graph for Modules

‎Let $R$ be commutative ring with identity and $M$ be an $R$-module‎. ‎The zero divisor graph of $M$ is denoted $Gamma{(M)}$‎. ‎In this study‎, ‎we are going to generalize the zero divisor graph $Gamma(M)$ to submodule-based zero divisor graph $Gamma(M‎, ‎N)$ by replacing elements whose product is zero with elements whose product is in some submodules $N$ of $M$‎. ‎The main objective of this pa...

متن کامل

ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS

In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1985

ISSN: 0021-8693

DOI: 10.1016/0021-8693(85)90040-7